
Trials, Tribulations, and eventual Triumph
Computing and Optimising Fisher Information for POSBP

Matthew P. Skerritt
from research conducted with A. Eshragh, J.V. Ross, B. Salvy, T. McCallum

CARMA Priority Research Centre
University of Newcastle, NSW, Australia

Maple Conference
November 2–6, 2020

Preliminaries

Partially Observable Simple Birth Processes

We consider a growing population whose population at time t is xt.

There are parameters (coming from parameters of the underlying statistical model)
λ: The growth rate of the population.
p: The probability 0 ≤ p ≤ 1 of observing an individual of the population.
these parameters are fixed for a given population.

We intend to sample the population at some times t1 ≤ t2 ≤ . . . ≤ tn.1

1Note that this is a simplified description of complicated statistical model. This explanation given
herein is su�cient to understand the computations we present.
1 20

Fisher Information and the Likelihood Function

Definition (Likelihood Function for a POSBP)
Given times t1 ≤ t2 ≤ . . . ≤ tn, let yn = (yt1 , . . . , ytn) ∈ Nn be a vector of the number
of individuals observed at those times, and let xn = (xt1 , . . . , xtn) ∈ Nn be a vector of
the true population value at those times.

The likelihood of seeing exactly those numbers of individuals in our POSBP
population (with parameters λ and p) is given by the likelihood function

LYn(yn | λ,p) =
∑

1≤xt1≤···≤xtn

n∏
i=1

ηi(yn, xn) (1)

The meaning of Yn and ηi(yn, xn) is outside the scope of this talk.

2 20

Fisher Information and the Likelihood Function

If we consider all possible patterns of observation, we can compute the Fisher
Information

Definition (Fisher Information for a POSBP)
Given times t1 ≤ t2 ≤ . . . ≤ tn and 0 ≤ p ≤ 1 Fisher Information is defined by:

FIYn(λ) =
∑
0≤yn

(
∂
∂λLYn(yn | λ,p)

)2
LYn(yn | λ,p)

(2)

3 20

The Problem to be Solved

Optimisation Problem
Given n, p, and λ we find 0 ≤ t1 ≤ · · · ≤ tn = 1 to maximise FIYn(λ)

We know that for maximality it must be that tn = 1. We are primarily interested in
the case that the initial population x0 = 1.

The nested sum in eq. (1) makes the computation infeasible numerically for n > 2,
and even for n = 2 the computation is slow.

We may try to alleviate this intractability is to compute the Fisher Information for
finitely many values of (t1, . . . , tn−1, 1) ∈ {0, 1}n, evenly distributed over the domain.

A C programming language implementation of this technique was produced by A.
Eshragh for the n = 2 case.

4 20

An Improvement by Bruno Salvy

Computation e�cient is greatly improved by the realisation of a generating
function, φ, for the likelihood function. This generating function is a rational
polynomial with the property

φ(u0, . . . ,un) =
P(u0, . . . ,un)
Q(u0, . . . ,un)

=
∞∑

ytn=0
· · ·

∞∑
yt1=0

∞∑
x0=1

LYn(yn | λ,p)ux00 u
yt1
1 · · ·uytnn

which we can rearrange to get

Q(u0, . . . ,un)
∞∑

ytn=0
· · ·

∞∑
yt1=0

∞∑
x0=1

LYn(yn | λ,p)ux00 u
yt1
1 · · ·uytnn = P(u0, . . . ,un)

from which we calculate a recurrence relation for the likelihood function by
equating coe�cients of like terms.

5 20

Enter the Speaker!

Reproducing Salvy’s Construction

Salvy’s Maple code generated a Fisher Information calculation function (including
computing the generating function) using compiled Maple and some clever (but
esoteric) _Inert_ASSIGN functions. The generation function required to be told
the size (in Gigabytes) of memory to use for the computation.

The speaker set about re-implementing Salvy’s approach from scratch (using his
code as a reference) with the intent of better understanding:

The derivation of the recurrence relation from the generating function.
How the recurrence should be built up in higher dimensions.
The recurrence relation calculation as a whole.

The e�ort was ultimately successful.

6 20

Problems and Refinements

Generating Function Computation

The generating function is symbolically pre-computed in Maple as a formal sum.

It is, in fact, a nested sum of the form
∞∑

yt1=0
· · ·

∞∑
ytn=0

∞∑
x0=1

∞∑
xt1=0

· · ·
∞∑

xtn=0
f (yt1 , . . . , ytn , x0, xt1 . . . , xtn) u

x0
0 u

yt1
1 · · ·uytnn

It must be independently computed for each value of n. The pre-computation time
grows significantly with n. For values as low as n = 4 or n = 5 the computation
crashed Maple reliably.

7 20

Generating Function Computation

Since we are mainly interested in the case that x0 = 1 we rearrange the generating
function to

∞∑
x0=1

 ∞∑
yt1=0

· · ·
∞∑

ytn=0

∞∑
xt1=0

· · ·
∞∑

xtn=0
f (yt1 , . . . , ytn , x0, xt1 , . . . , xtn) u

yt1
1 · · ·uytnn

ux00

The coe�cient of u10 is the generating function we are interested in, which can be
computed directly as

∞∑
yt1=0

· · ·
∞∑

ytn=0

∞∑
xt1=0

· · ·
∞∑

xtn=0
f (yt1 , . . . , ytn , x0, xt1 . . . , xtn) u

yt1
1 · · ·uytnn

Doing so greatly reduces the required pre-computation time, although the time still
grows significantly with n.

8 20

Computing the Recurrence Relation

We have computed generating functions for all values 2 ≤ n ≤ 5.

We adopt the following notation

Notation
Let v = (v1, . . . , vn) ∈ Nn, and consider the generating function

φ(1,u1, . . . ,un) =
P(1,u1, . . . ,un)
Q(1,u1, . . . ,un)

We denote by Pv and Qv the coe�cient of uv11 · · ·uvnn in P and Q respectively.

In all cases computed so far, the only non-zero coe�cients observed were precisely
Pc and Qc indexed by c ∈ {0, 1}n.

9 20

Computing the Recurrence Relation

The recurrence relation ends up in the form

LYn(yn | λ,p) = 1
Q0

Pyn − ∑
cn∈{0,1}n
cn 6=(0,...,0)

LYn(yn − cn | λ,p)

 (3)

We build the recurrence up starting with LYn(0 | λ,p) using the convention that
LYn(v | λ,p) = 0 if vi < 0 for any 1 ≤ i ≤ n.

We also observe that the Fisher Information is a sum of likelihoods over all
possible vectors yn, and exploit the recurrence relation of likelihoods to avoid
needless computation.

10 20

Weak Compositions and Slices

Definition (Weak composition)
Let n be a non-negative integer. A sequence of k non-negative integers a1, . . . ,ak is
said to be a weak composition of n into k parts if n =

∑k
i=1 ai.

Similarly, a vector (a1, . . . ,ak) of non-negative integers may also be said to be a
weak composition of n into k parts.

Definition (Set of Weak Compositions of a Fixed Value)
For an integer S ≥ 0, we denote the set of all weak compositions of S into n parts by

WCn(S) := {an ∈ Zn | an is a weak composition of S} .

11 20

Weak Compositions and Slices

Observe that for the vector yn = (yt1 , . . . , ytn) if we let S =
∑n

i=1 yti it is the case that
yn is a weak composition of S into n parts.

In general, for any vector v = (v1, . . . , vn) ∈ Nn, that vector will be a weak
composition of of S = ‖v‖1 =

∑n
i=1 vi into n parts.

We further observe from eq. (3) that for any given yn, the recursive computation of
LYn(yn | λ,p) uses values of LYn(v | λ,p) for vectors v ∈ WCn(S) for S strictly smaller
than ‖yn‖1.

These observations are exploited for an e�ective computation

12 20

Weak Compositions and Slices

Definition (Slice)
Let S > 0 be an integer. We define the Sth slice of the computation of FIYn(λ) by

SLS,Yn(λ) :=
∑

yn∈WCn(S)

(
∂
∂λLYn(yn | λ,p)

)2
LYn(yn | λ,p)

From which we re-write eq. (1) as:

FIYn(λ) =
∑
0≤yn

(
∂
∂λLYn(yn | λ,p)

)2
LYn(yn | λ,p)

=
∞∑
S=0

∑
yn∈WCn(S)

(
∂
∂λLYn(yn | λ,p)

)2
LYn(yn | λ,p)

=
∞∑
S=0

SLS,Yn(λ)

13 20

Weak Compositions and Slices

Definition (Slice Order)
Two slices SLS,Yn(λ), and SLS′,Yn(λ) are ordered by the numeric value of S and S′.

We observe:
The individual likelihood function values in each slice can be computed in
parallel once the Likelihood values for all previous slices are calculated.
Each slice needs only the likelihood function values for the n− 1 previous slices

So the approach we take for calculation is to build each slice up one at a time,
starting at S = 0. We store the individual likelihood function values to avoid
needless re-computation.

14 20

Maple Limitations

We would prefer to
Use only the memory for the n slices we need at any point in the computation.
Compute each slice in parallel.

However, Maple provides no real memory management (as compared to a language
like C or C++). In particular it has no (apparent) means of discarding used memory.
We either:

Pre-allocate a all the memory for all the LYn(yn | λ,p) values we need for the
entire computation.
Create tables for each slice (and rely on garbage collection).
Do something clever with re-using arrays and overwriting unneeded values.

These use too much memory and/or require knowing a priori the number of slices.

15 20

Maple Limitations

In addition to the memory troubles, Maple’s threading capabilities did not
significantly e�ect the computation time at all (but did significantly e�ect the
complexity of the code). Several strategies were attempted.

The computations required computing many slices before a reliable value for Fisher
Information was found. Due to Maple being an interpreted language, the
computation times were slow. Compiled Maple can (and did) help.

Nonetheless, the problems proved too troublesome, and Maple was abandoned for
computing Fisher Information.

16 20

C++ to the Rescue

An implementation was written in C++, which avoided the above problems. We were
able to leverage the standard library data structures and parallelisation
capabilities to great e�ect.

We note that the computation time grows with the values of all inputs and
parameters (n, ti, λ, and p). The growth is particularly significant in the case of n
primarily and λ secondarily.

The computation is fast enough that it is feasible to optimise the Fisher Information
in a more fine grained manner than was previously possible. To this end, the C++
code was compiled to a shared library which exported functions for computing
Fisher Information for n = 2,n = 3,n = 4, and n = 5 in both parallel and
single-threaded variants.

17 20

Back to Maple

The shared library from the C++ code was read by Maple and the functions
imported. This was remarkably easy.2

We used Maple’s Optimization package to optimise the Fisher Information.
Wrapper functions (for both the optimisation, and the Fisher Information) with
the remember option was created to cache results.
The plot function was used to produce graphs of optimal values of ti (one
graph per ti) against 0 ≤ p ≤ 1 for fixed n and λ. This let us leverage the
adaptive plotting feature.

2The speaker has not yet been able to successfully import these shared library functions into
either Mathematica, nor MATLAB.

18 20

Back to Maple

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

Probability of observation, p

Ob
se
rv
at
io
n
tim

e,
t∗ i

t∗1
t∗2

Figure: Optimal observation times for n = 3, λ = 2

19 20

Back to Maple

Optimisation exacerbates the execution time grown with n as each subsequent n
requires optimisation over a higher dimensional search space, and consequently
more lower-dimensional boundary domains.

We were able to optimise for cases up to n = 4.
As the value of n increased, the feasible values for λ decreased.
On a 36 core machine:
I For n = 2 the total optimisation time varied from about 1 second for λ = 0.5 to
about 7 and a quarter hours for λ = 5.

I For n = 3 the total optimisation time varied from about 10 minutes for λ = 0.5 to
approximately 3 months for λ = 4.

I For n = 4 the total optimisation time varied from about 16 and a quarter hours for
λ = 0.5 to about 5 and a half days for λ = 1.

20 / 20

Closing

Summary

We used a dynamic programming technique to compute the likelihood function for
a Partially Observable Simple Birth Process using a recurrence relation extracted
from a generating function. From this we computed and optimised Fisher
Information.

Maple was essential to symbolically pre-calculate the generating functions.
Maple was not up to the task of computing the Fisher Information directly, and
a C++ program was written instead.
The C++ program was compiled to a shared library, which Maple was able to
easily make use of.
The imported shared library functions were thus able to be used with the
Maple Optimization package.

Thank You!

	Preliminaries
	Enter the Speaker!
	Problems and Refinements
	Closing

