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1. Introduction to Integer Relations



Definition
Let . Any  integers, 

are an integer relation of the original numbers  if

For convenience, we will usually think of  and 
 and say that  is an integer realtion of .

, … , ∈ ℝ𝑥1 𝑥𝑛 𝑛 , … , ∈ ℤ𝑎1 𝑎𝑛

𝑥𝑖

+ ⋯ + = 0𝑎1𝑥1 𝑎𝑛𝑥𝑛

𝑥 ∈ ℝ𝑛

𝑎 ∈ ℤ𝑛 𝑎 𝑥



Aside: picture proof that   
and so  really is an integer relation for .

arctan 1 + arctan 2 + arctan 3 = 𝜋

(4, −3, 4) (arctan 2, 𝜋, arctan 3)





HISTORY
Euclid's extended algorithm.

 relates , , and 
by integers.
Each iteration produces incrementally better
approximation.
Also works for real numbers (see Book X, Prop 3).

𝑎 𝑚 + 𝑏 𝑛 = gcd(𝑎, 𝑏) 𝑎 𝑏 gcd(𝑎, 𝑏)



HISTORY
General case (for more than 2 numbers).

Sought a�er by: Euler, Jacobi, Pincaré, Minkowski,
Perron, Brun, Mahler, and others.
None proved to work for 
None adequately captured the increasing
approximation property.

𝑛 > 3



HISTORY
Generalisations satisfying both properties.

First one published by Ferguson & Forcade in 1979
with extensive, unpublished notes, by Bergman.
Several intermediate results (Ferguson & Forcade
1982, Ferguson 1986, Ferguson 1987).
PSOS algorithm (Ferguson 1988)
PSLQ algorithm (Ferguson & Bailey 1992)





APPLICATIONS
Can see if a number  satisfies an integer polynomial
by searching for integer relations of 

Bailey & Ferguson used such a technique to show 
 and some others do not satisfy a

low-degree polynomial.

𝛼

( , , … , )𝛼0 𝛼1 𝛼𝑛

𝛾, log 𝛾, log 𝜋, 𝜁(3)



APPLICATIONS
Borwein Bailey Plouffe formula 

found by “inspired guessing and extensive searching
using the PSLQ integer relation algorithm”

𝜋 = ( ( − − − ))∑
𝑘=0

∞

1

16𝑘

4

8𝑘 + 1

2

8𝑘 + 4

1

8𝑘 + 5

1

8𝑘 + 6



APPLICATIONS
Bailey & Plouffe use PSLQ to search for (“recognise”)
symbolic representations of floating point numbers.

E.g., they were able to recognise that

(note that the RHS can be reduced to )

1.6083594219855456 … ≈ d𝑡 =∫
∞

0

𝑡
7/4

𝑒
−𝑡

21𝜋 2‾√
16 Γ(1/4)

Γ(3/4)21
16



APPLICATIONS
Chamberland uses PSLQ to find relationships between
functions.

There are many others. See Borwein & Lisoněk 2000
“Applications of Integer Relation Algorithms” (

).
DOI:

10.1016/S0012-365X(99) 00256-3

https://doi.org/10.1016/S0012-365X(99)00256-3




We can extend the idea to allow complex numbers.

Definition
Let   . Integers,   are

an integer relation of the original numbers  if
, … , ∈𝑥1 𝑥𝑛 ℝ , … , ∈𝑎1 𝑎𝑛 ℤ

𝑥𝑖

+ ⋯ + = 0𝑎1𝑥1 𝑎𝑛𝑥𝑛



Definition
Let   . Integers,   are

an integer relation of the original numbers  if

Note that 

This definition encapsulates the previous one.

, … , ∈𝑥1 𝑥𝑛 ℂ , … , ∈𝑎1 𝑎𝑛 ℤ[𝑖]

𝑥𝑖

+ ⋯ + = 0𝑎1𝑥1 𝑎𝑛𝑥𝑛

ℤ[𝑖] = {𝑎 + 𝑏𝑖 : 𝑎, 𝑏 ∈ ℤ}
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2. Computation of Classical Integer Relations



When talking about integer relations in general, we use
the following notation so as to encapsulate all cases.

Notation

We will use  to denote the field of numbers which
we are relating and we will use  to denote the ring
of integers from which the relation elements are
from.

𝔽





When talking about integer relations in general, we use
the following notation so as to encapsulate all cases.

Notation

We will use  to denote the field of numbers which
we are relating and we will use  to denote the ring
of integers from which the relation elements are
from.

𝔽



The classical cases, then, are when  and 
, and when  and .

 = ℤ

𝔽 = ℝ  = ℤ[𝑖] 𝔽 = ℂ



Definition

Let  be a linearly
independent set of vectors. The set

is the lattice spanned by . We call  the basis of the
lattice 

We will sometimes refer to an -lattice if we need to
specify the integer ring explicitly.

𝐵 = { , … , } ⊂𝑏1 𝑏𝑛 𝔽
𝑛

𝐿 = { , … , : ∈ }𝜆1𝑏1 𝜆𝑛𝑏𝑛 𝜆1

𝐵 𝐵

𝐿





We can represent a lattice  as a matrix by using the
basis vectors as row vectors.

Example

The lattice spanned by the vectors  and 
, and  is given by the matrix 

𝐿

(1, 2, 0)

(3, 0, 4) (0, 5, 6)

⎡

⎣

⎢
⎢

1

3

0

2

0

5

0

4

6

⎤

⎦

⎥
⎥



We can represent a lattice  as a matrix by using the
basis vectors as row vectors.

Example

The lattice spanned by the vectors  and 
, and  is given by the matrix 

𝐿

(1, 2, 0)

(3, 0, 4) (0, 5, 6)

⎡

⎣

⎢
⎢

1

3

0

2

0

5

0

4

6

⎤

⎦

⎥
⎥

Note that the literature o�en uses column vectors instead of row vectors.



An information theoretic argument shows that in order
to numerically compute an integer relation on 
numbers, where the relation consists of integers with
no more than  digits, then at least  decimal digits
of precision need to be used.

In the case of complex numbers and Gaussian integers,
the number of digits is the number of digits in the real
part, or the imaginary part, whichever is larger.

𝑛

𝑑 𝑛𝑑





LLL
The LLL algorithm was introduced by Lenstra, Lenstra
Jr, and Lovasz in 1982.

It is not an algorithm for computing integer relations
directly. Instead it finds short lattice vectors

It can, however, be used to compute integer relations



LLL
Given a basis  for a lattice , the LLL algorithm
computes a basis  such that

where 

𝐵 𝐿

= ( , … , )𝐵′ 𝑏′
1

𝑏′
𝑛

| | ≤  for 1 ≤ 𝑗 < 𝑖 ≤ 𝑛𝜇𝑖,𝑗

1

2

|| + | ≥ || |  for 1 < 𝑖 ≤ 𝑛𝑏∗

𝑖 𝜇𝑖,𝑗𝑏
∗

𝑖−1
|2

3

4
𝑏∗

𝑖−1
|2

= −  and  =𝑏∗

𝑖 𝑏′
𝑖 ∑𝑖−1

𝑗=1 𝜇𝑖,𝑗𝑏
∗

𝑗 𝜇𝑖,𝑗
⋅𝑏′

𝑖 𝑏∗

𝑗

|| |𝑏∗

𝑗 |2



LLL
To find an integer relation on 
we can use LLL on the lattice

for some .

𝑥 = ( , … , ) ∈𝑥1 𝑥𝑛 ℝ𝑛

𝐿 :=

⎡

⎣

⎢
⎢
⎢
⎢

1

0

⋮

0

0

1

⋮

0

0

0

⋱

0

⋯

⋯

⋯

⋯

0

0

⋮

1

𝑁𝑥1

𝑁𝑥2

⋮

𝑁𝑥𝑛

⎤

⎦

⎥
⎥
⎥
⎥

𝑁 ∈ ℝ



LLL
Elements of the lattice look like

So if the  are an integer relation for  then the last
term will be 0.

We can prove that if  is large enough, then the first
element of the reduced lattice must contain the
integer relation.

( , … , , 𝑁( + ⋯ + ))𝜆1 𝜆𝑛 𝜆1𝑥1 𝜆𝑛𝑥𝑛

𝜆𝑖 𝑥

𝑁



LLL
For the complex case where n 
we still use the augmented lattice  like
we did for the real case.

However we then construct a 2nd augmented lattice 

and use LLL on that lattice.

𝑧 = ( , … , ) ∈𝑧1 𝑧𝑛 ℂ𝑛

𝐿 := [ 𝑁𝑧]𝐼𝑛

[ ]
ℜ𝐿

−ℑ𝐿

ℑ𝐿

ℜ𝐿



LLL
In all cases, we don't know how large to make 
before we start. So we must use trial and error.

We have found, experimentally, that with numeric
(floating point) calculations it is possible for  to be
too large, even though the theory requires  to be
“sufficiently large”.

𝑁

𝑁

𝑁





PSLQ
The PSLQ algorithm was introduced by Ferguson &
Bailey in 1988. It was later analysed by Ferguson,
Bailey, and Arno in 1999

It can handle both the real and complex cases directly.

We will not discuss the details of the algorithm itself.
However we will establish some facts.



PSLQ
Observe that in both the real and complex cases 
forms a lattice, and that .

Definition

Let . An integer  is a nearest integer if 
 is maximal. A function  is a

nearest integer functino if it maps each  to
one of its nearest integers.

We denote by  if we need to be specific.



 ⊂ 𝔽

𝑥 ∈ 𝔽 𝑎 ∈ 

|𝑥 − 𝑎| ⌈⋅⌋ : 𝔽 → 

𝑥 ∈ 𝔽

⌈⋅⌋





PSLQ
There are parameters: , and  that must satisfy 

 is bounded by the integer lattice; choose to
maximise .

 is minimised when ; choose any larger value.

 is fixed by the choice of  and the value of .

𝛾, 𝜌 𝜏

≥ |𝑥 − ⌈𝑥⌋| for all 𝑥 ∈ 𝔽
1

𝜌

1 ≤ 𝜏 ≤ 𝜌

= +
1

𝜏2

1

𝛾2

1

𝜌2

𝜌

1/𝜌

𝛾 𝜏 = 1

𝜏 𝛾 𝜌



PSLQ
Each iteration of the PSLQ algorithm finds an
increased lower bound on the norm of any integer
relation on the input.

The algorithm can terminate when that bound exceeds
some threshold.

If the algorithm finds a relation,  then 
 where  is the norm of the smallest

possible relation.

𝑎

||𝑎|| ≤ 𝑀𝛾𝑛−2 𝑀





COMPARING LLL AND PSLQ
LLL requires more precision than PSLQ

 
Real Integer Relation Problems
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COMPARING LLL AND PSLQ
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3. A Brief Introduction to Algebraic Number Theory



Definition

Let  be a field. If  is a subfield of some other field 
 (i.e.,  then we call  a field extension (or,

equivalently an extension field) of .

We denote this by  when we need to be
explicit about the base field and the extension.

Note that the literature o�en uses the notation 
instead.

𝔽 𝔽

𝕂 𝔽 ⊆ 𝕂 𝕂

𝔽

𝕂 : 𝔽

𝕂/𝔽



Definition

Let  be a field, and consider an extension field 
. An element  is said to be algebraic

over  if it satisfies

for some  and . Note that .

For example  satisfies  and so is
algebraic over the rationals.

𝔽

𝕂 : 𝔽 𝑘 ∈ 𝕂

𝔽

+ ⋯ + 𝑘 + = 0𝑓𝑛𝑘𝑛 𝑓1 𝑓0

𝑛 ∈ ℕ ∈ 𝔽𝑓𝑖 ≠ 0𝑓𝑛

2‾√ − 2 = 0𝑘2



Definition

Let  be an integral domain and consider an
extension field  such that . An element 

 is said to be integeral over  if it satisfies a
monic polynomial

for some  and 

An integral domain is a commutative ring with multiplicative identity and
no non-zero elements  with the property that .

𝐷

𝕂 : 𝔽 𝐷 ⊆ 𝕂

𝑘 ∈ 𝕂 𝔽

+ + ⋯ + 𝑘 + = 0𝑘𝑛 𝑑𝑛−1𝑘𝑛−1 𝑑1 𝑑0

𝑛 ∈ ℕ ∈ 𝐷𝑑𝑖

,𝑑1 𝑑2 = 0𝑑1𝑑2



Definition

Let .

We denote by  the smallest subfield of  that
contains both  and .

We denote by  the smallest subring of  that
contains both  and .

Note that the ring  is o�en called the “rational
integers” to avoid ambiguity.

𝑧 ∈ ℂ

ℚ(𝑧) ℂ

ℚ 𝑧

ℤ[𝑧] ℂ

ℤ 𝑧

ℤ



We are primarily interested in extension fields of .

Definition

A number  is an algebraic number (or simply
algebraic) if it is algebraic over .

A number  is an algebraic integer if it is
integral over .

The ring of all algebraic integers is denoted by .

An algebraic extension is real if  and complex otherwise.

ℚ

𝑧 ∈ ℂ

ℚ

𝑧 ∈ ℂ

ℤ



𝕂 ⊆ ℝ





We are primarily interested in extension fields of .

Definition

An extension field  is an algebraic extension
field (or simply an algebraic extension if every 

 is an algebraic number.

Its ring of integers of , denoted , is . We
call such rings algebraic integers

ℚ

𝕂 : ℚ

𝑘 ∈ 𝕂

𝕂 𝕂 𝕂 ∩ 



We are primarily interested in extension fields of .

Example

The set  is an algebraic extension field. Its
elements look like , such as 

The golden ratio  is an algebraic integer of 
 because it satisfies the polynomial 

. Similarly for .

ℚ

ℚ( )5‾√
{ + : ∈ ℚ}𝑞1 𝑞2 5‾√ 𝑞𝑖

+1
2

32
101

5‾√
1+ 5√

2

ℚ( )5‾√
− 𝑥 − 1 = 0𝑥2 1− 5√

2





QUADRATIC FIELDS
We will restrict our attention to quadratic extension
fields. These are fields of the form:

wher  is square free.

Elements of these fields satisfy quadratic (or lower
degree) polynomials with rational coefficients.

ℚ( ) = { + : ∈ ℚ}𝐷‾‾√ 𝑞1 𝑞2 𝐷‾‾√ 𝑞𝑖

𝐷 ∈ ℤ



QUADRATIC FIELDS
The algebraic integers of a quadratic field (which we
call quadratic integers) are of the form

where

= ℤ[𝜔] = { + 𝜔 : ∈ ℤ}ℚ( )𝐷√ 𝑚1 𝑚2 𝑚𝑖

𝜔 = {
𝐷‾‾√

1+ 𝐷√
2

 if 𝐷 ≡ 2, 3 (mod 4)

 if 𝐷 ≡ 1 (mod 4)



    

QUADRATIC FIELDS

𝐷 ≡ 2, 3 (mod 4) 𝐷 ≡ 1 (mod 4)



QUADRATIC FIELDS
Finally we mention a special class of quadratic fields.

Real norm Euclidean fields

, , , , , , 
, , , , , 
, , , , 

Complex norm Euclidean fields
, , , , 

ℚ( )2‾√ ℚ( )3‾√ ℚ( )5‾√ ℚ( )6‾√ ℚ( )7‾√ ℚ( )11‾‾‾√
ℚ( )13‾‾‾√ ℚ( )17‾‾‾√ ℚ( )19‾‾‾√ ℚ( )21‾‾‾√ ℚ( )29‾‾‾√
ℚ( )33‾‾‾√ ℚ( )37‾‾‾√ ℚ( )41‾‾‾√ ℚ( )55‾‾‾√ ℚ( )73‾‾‾√

ℚ( )−1‾ ‾‾√ ℚ( )−2‾ ‾‾√ ℚ( )−3‾ ‾‾√ ℚ( )−7‾ ‾‾√ ℚ( )−11‾ ‾‾‾√
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4. Algebraic Integer Relations



RELATIONS WITH ALGEBRAIC INTEGERS
Recall the definiton of an integer relation:

Definition

Let . Integers, 
are an integer relation of the original numbers  if

, … , ∈ ℂ𝑥1 𝑥𝑛 , … , ∈ ℤ[𝑖]𝑎1 𝑎𝑛

𝑥𝑖

+ ⋯ + = 0𝑎1𝑥1 𝑎𝑛𝑥𝑛



RELATIONS WITH ALGEBRAIC INTEGERS
Definition

Let . Integers, 
are an integer relation of the original numbers  if

We could try and replace  with an algebraic
extension field, and replace  with the ring of
integers of that field.

, … , ∈ ℂ𝑥1 𝑥𝑛 , … , ∈ ℤ[𝑖]𝑎1 𝑎𝑛

𝑥𝑖

+ ⋯ + = 0𝑎1𝑥1 𝑎𝑛𝑥𝑛

ℂ

ℤ[𝑖]



RELATIONS WITH ALGEBRAIC INTEGERS
We could try and replace  with an algebraic
extension field, and replace  with the ring of
integers of that field.

However, this won't capture the existing cases.

The fields  and  are not algebraic fields (although
they are extension fields of  ). Thus they do not have
algebraic integers.

If we try to take the intersections anyway (  or 
) we do not get correct integers.

ℂ

ℤ[𝑖]

ℝ ℂ

ℚ

ℝ ∩ 

ℂ ∩ 



RELATIONS WITH ALGEBRAIC INTEGERS
Instead, specify an intermediate extension field.

Definition

Let  and let  be an algebraic extension
field. Let .

Let . Integers,  are
an algebraic integer relation (or a -integer relation)
of the original numbers  if

𝔽 ∈ {ℝ, ℂ} 𝕂

 = 𝕂

, … , ∈ 𝔽𝑥1 𝑥𝑛 , … , ∈ 𝑎1 𝑎𝑛

𝕂

𝑥𝑖

+ ⋯ + = 0𝑎1𝑥1 𝑎𝑛𝑥𝑛



5. Computing Quadratic Integer Relations
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5. Computing Quadratic Integer Relations



REDUCTION TO CLASSICAL CASES
Observe that for an quadratic integer relation:

This suggests a way to reduce a quadratic integer
relation to a classical one.

=

( + 𝜔) + ⋯ + ( + 𝜔)𝑚1,1 𝑚1,2 𝑥1 𝑚𝑛,1 𝑚𝑛,2 𝑥𝑛

( + ⋯ + ) + ( 𝜔 + ⋯ 𝜔𝑚1,1𝑥1 𝑚𝑛,1𝑥𝑛 𝑚1,2 𝑥1 𝑚𝑛,2 𝑥



REDUCTION TO CLASSICAL CASES
Given  we compute 

 and search for a
classical integer relation on that.

We recover the integer relation by taking 
for .

This works well for real quadratic fields (i.e., when 
). It works less well for complex quadratic fields.

( , … , ) ∈𝑥1 𝑥𝑛 𝔽
𝑛

( , … , , 𝜔, … , 𝜔) ∈𝑥1 𝑥𝑛 𝑥1 𝑥𝑛 𝔽
2𝑛

+ 𝜔𝑎𝑘 𝑎𝑛+𝑘

1 ≤ 𝑘 ≤ 𝑛

𝐷 > 1



REDUCTION TO CLASSICAL CASES
In the complex case, the integers are of the form 

. So when we attempt to recover
the relation we get

a�er expansion and some simplification we get

= + 𝑖𝑎𝑘 𝑚𝑘,1 𝑚𝑘,2

( + 𝑖) + ( + 𝑖) 𝜔𝑚𝑘,1 𝑚𝑘,2 𝑚𝑘+𝑛,1 𝑚𝑘+𝑛,2

+ 𝑖 + 𝑖 −  for  , ∈ ℤ𝛼1 𝛽2 |𝐷|‾ ‾‾‾√ 𝛼2 𝛽2 |𝐷|‾ ‾‾‾√ 𝛼1 𝛽1



REDUCTION TO CLASSICAL CASES
Much of the time the reduction technique works fine,
and gives good answers even in the complex cases.

When it does not work, we try two techniques to
nonetheless extract a relation.



REDUCTION TO CLASSICAL CASES
Decomposition method

We observe that

can be written as

+ 𝑖 + 𝑖 −𝛼1 𝛽2 |𝐷|‾ ‾‾‾√ 𝛼2 𝛽2 |𝐷|‾ ‾‾‾√

( + 𝑖 ) + 𝑖 ( + )𝛼1 𝛽2 |𝐷|‾ ‾‾‾√ 𝛼2 𝛽2 |𝐷|‾ ‾‾‾√



REDUCTION TO CLASSICAL CASES
Conjugate Method

Given 

a conjugate is 

Multiplying the number by its conjugate gives an
element of . We multiply all elements of the
relation by the conjugate of only one of the elements.

+ 𝑖 + 𝑖 −𝛼1 𝛽2 |𝐷|‾ ‾‾‾√ 𝛼2 𝛽2 |𝐷|‾ ‾‾‾√

− 𝑖 − 𝑖 −𝛼1 𝛽2 |𝐷|‾ ‾‾‾√ 𝛼2 𝛽2 |𝐷|‾ ‾‾‾√

ℚ( )𝐷√



REDUCTION TO CLASSICAL CASES
Both the methods for correcting the complex case
work well in practice.

We do not have proofs that they will always be correct.
It is nonetheless easy to just try them, and check the
extracted relation.





USING LLL
To compute an algebraic integer n 

 we still use the augmented
lattice  like we did for the real case.

However we then construct a 2nd augmented lattice. 

and use LLL on that lattice.

𝑧 = ( , … , ) ∈𝑧1 𝑧𝑛 𝔽
𝑛

𝐿 := [ 𝑁𝑧]𝐼𝑛

[ ]
ℜ𝐿

𝐿𝔚1

ℑ𝐿

𝐿𝔚2



USING LLL
However we then construct a 2nd augmented lattice. 

and use LLL on that lattice.

[ ]
ℜ𝐿

𝐿𝔚1

ℑ𝐿

𝐿𝔚2

= {𝔚1𝑥𝑘

− ℑ|𝐷|‾ ‾‾‾√ 𝑥𝑘

(ℜ − ℑ ) /2𝑥𝑘 |𝐷|‾ ‾‾‾√ 𝑥𝑘

 if  if 𝐷 ≡ 2, 3 (mod 4)

 if 𝐷 ≡ 1 (mod 4)

= {𝔚1𝑥𝑘

− ℑ|𝐷|‾ ‾‾‾√ 𝑥𝑘

(ℜ − ℑ ) /2𝑥𝑘 |𝐷|‾ ‾‾‾√ 𝑥𝑘

 if  if 𝐷 ≡ 2, 3 (mod 4)

 if 𝐷 ≡ 1 (mod 4)



USING LLL
As with the other cases, so long as  is large enough
then the procedure must find an algebraic integer
relation.

𝑁





MODIFYING PSLQ
We attempt to modify PSLQ while keeping the existing
theory.

We simply use a quadratic integer nearest integer
function, and modify the algorithm to allow us to
specify the quadratic extension field we wish to use.



MODIFYING PSLQ
We simply use a quadratic integer nearest integer
function, and modify the algorithm to allow us to
specify the quadratic extension field we wish to use.

This introduces a problem: for real quadratic extension
fields, the integers do not form a lattice (there is no
unique nearest integer to a field element), so we
cannot use the existing theory.

We restrict our attention to the complex cases, then.



MODIFYING PSLQ
We restrict our attention to the complex cases, then.

In these cases we have a more subtle problem.

As  increases, the parameter  decreases, until
eventually  making it impossible to satisfy the 

 condition.

𝐷 𝜌

𝜌 < 1

1 < 𝜏 ≤ 𝜌



MODIFYING PSLQ
In these cases we have a more subtle problem.

As  increases, the parameter  decreases, until
eventually  making it impossible to satisfy the 

 condition.

The complex quadratic fields that do not exhibit these
problems are exactly:

𝐷 𝜌

𝜌 < 1

1 < 𝜏 ≤ 𝜌

ℚ( ), ℚ( ), ℚ( ), ℚ( )−2‾ ‾‾√ −3‾ ‾‾√ −7‾ ‾‾√ −11‾ ‾‾‾√



MODIFYING PSLQ
As  increases, the parameter  decreases, until
eventually  making it impossible to satisfy the 

 condition.

The complex quadratic fields that do not exhibit these
problems are exactly:

These are precisely the complex quadratic norm
Euclidean fields.

𝐷 𝜌

𝜌 < 1

1 < 𝜏 ≤ 𝜌

ℚ( ), ℚ( ), ℚ( ), ℚ( )−2‾ ‾‾√ −3‾ ‾‾√ −7‾ ‾‾√ −11‾ ‾‾‾√



MODIFYING PSLQ
The complex quadratic fields that do not exhibit these
problems are exactly:

We note that we've had surprising success with the
modified PSLQ on

ℚ( ), ℚ( ), ℚ( ), ℚ( )−2‾ ‾‾√ −3‾ ‾‾√ −7‾ ‾‾√ −11‾ ‾‾‾√

ℚ( ), ℚ( ), ℚ( )−5‾ ‾‾√ −6‾ ‾‾√ −10‾ ‾‾‾√



TALK SUMMARY
1. ✅ Introduction to Integer Relations
2. ✅ Computation of Classical Integer Relations
3. ✅ A Brief Introduction to Algebraic Number Theory
4. ✅ Algebraic Integer Relations
5. ✅ Computing Quadratic Integer Relations
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